Pain is the most common reason for physician consultation in the United States. One out of three Americans is affected by chronic pain annually. The number one reason for missed work or school days is musculoskeletal pain. Currently accepted therapies consist of non-steroidal anti-inflammatory drugs, steroid injections, opiate pain medications and surgery, each of which carries their own specific risk profiles. What is needed are effective treatments for pain which have an acceptably low risk-profile. For over forty years, low level laser (light) therapy (LLLT) and LED (light emitting diode) therapy (also known as photobiomodulation) has been shown to reduce inflammation and edema, induce analgesia, and promote healing in a range of musculoskeletal pathologies. The purpose of this paper is to review the use of LLLT for pain, the biochemical mechanisms of action, the dose response curves, and how LLLT may be employed by orthopedic surgeons to improve outcomes and reduce adverse events.
The purpose of this scoping review was to identify and synthesize literature on dosage variables on the efficacy of low-level laser therapy (LLLT) for neuromusculoskeletal conditions.
Photobiomodulation (PBM) also known as low-level level laser therapy is the use of red and near-infrared light to stimulate healing, relieve pain, and reduce inflammation. The primary chromophores have been identified as cytochrome c oxidase in mitochondria, and calcium ion channels (possibly mediated by light absorption by opsins). Secondary effects of photon absorption include increases in ATP, a brief burst of reactive oxygen species, an increase in nitric oxide, and modulation of calcium levels. Tertiary effects include activation of a wide range of transcription factors leading to improved cell survival, increased proliferation and migration, and new protein synthesis.
The purpose of this study was to compare the therapeutic effects of low-level laser therapy (LLLT) with 808 and 660 nm wavelength on muscle strength and functional outcomes in individuals with knee osteoarthritis (OA).